Setup(1λ,N): This function outputs pp=PC.Setup(1λ,d).
We consider an input x with size of 32. Hence, ni=32. Considering a program which requires 4 gates for its arithmatization, we have ng=4. In this example, the maximum number of registers which are changed during the execution is nr=2 (Please see Example 2 in the Commitment phase). If the computation is done in F of order p=4,767,673, ∣F∣=4,767,673. Also,∣H∣=n=ng+ni+1=37. Also, b is a random number in {1,...,∣F∣−∣H∣}={1,...,(4,767,673−37)=4,767,636} such as b=2. Also, m=2ng=8, ∣w∣=ng−nr=2, ∣K∣=m=8. Hence:
d={dAHP(N,i,j)}i∈[kAHP]⋃{0},j∈[sAHP(i)]={8,8,8,8,8,8,8,8,8,4,39,39,39,40,75,36,38,36,36,7,42}
Now, we run KZG.Setup(1λ,d), considering a generator of F, g=5, for each element in d:
KZG.Setup(1λ,138)=(ck,vk)=({gτi}i=0137,gτ) that for secret element τ=119 and generator g=5 outputs ck={gτi}i=0137=(5,595,...) and vk=595.
KZG.Setup(1λ,4)=(ck,vk)=({gτi}i=03,gτ) that for secret element τ=119 and generator g=5 outputs ck={gτi}i=03=(5,595,...) and vk=595.
KZG.Setup(1λ,39)=(ck,vk)=({gτi}i=038,gτ) that for secret element τ=119 and generator g=5 outputs ck={gτi}i=038=(5,595,...) and vk=595.
KZG.Setup(1λ,40)=(ck,vk)=({gτi}i=039,gτ) that for secret element τ=119 and generator g=5 outputs ck={gτi}i=039=(5,595,...) and vk=595.
KZG.Setup(1λ,75)=(ck,vk)=({gτi}i=074,gτ) that for secret element τ=119 and generator g=5 outputs ck={gτi}i=074=(5,595,...) and vk=595.